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20III. Physikalisches Institut A, RWTH Aachen, Aachen, Germany
21Physikalisches Institut, Universität Bonn, Bonn, Germany

22Physikalisches Institut, Universität Freiburg, Freiburg, Germany
23Institut für Physik, Universität Mainz, Mainz, Germany

24Ludwig-Maximilians-Universität München, München, Germany
25Fachbereich Physik, University of Wuppertal, Wuppertal, Germany

26Panjab University, Chandigarh, India
27Delhi University, Delhi, India



3

28Tata Institute of Fundamental Research, Mumbai, India
29University College Dublin, Dublin, Ireland

30Korea Detector Laboratory, Korea University, Seoul, Korea
31SungKyunKwan University, Suwon, Korea

32CINVESTAV, Mexico City, Mexico
33FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands

34Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands
35Joint Institute for Nuclear Research, Dubna, Russia

36Institute for Theoretical and Experimental Physics, Moscow, Russia
37Moscow State University, Moscow, Russia

38Institute for High Energy Physics, Protvino, Russia
39Petersburg Nuclear Physics Institute, St. Petersburg, Russia

40Lund University, Lund, Sweden, Royal Institute of Technology and Stockholm University, Stockholm, Sweden, and
Uppsala University, Uppsala, Sweden

41Physik Institut der Universität Zürich, Zürich, Switzerland
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We have performed the first direct measurement of the time integrated flavor untagged charge
asymmetry in semileptonic B0

s decays, As,unt
SL , by comparing the decay rate of B0

s → µ+D−s νX,

where D−s → φπ− and φ → K+K−, with the charge-conjugate B0
s decay rate. This sample was

selected from 1.3 fb−1 of data collected by the D0 experiment in Run II of the Fermilab Tevatron
collider. We obtain As,unt

SL = [1.23 ± 0.97 (stat) ± 0.17 (syst)] × 10−2. Assuming that ∆ms/Γ̄s ≫ 1
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and ∆Γs/(2Γ̄s) < 1, this result can be translated into a measurement on the CP-violating phase in
B0

s mixing: ∆Γs/∆ms · tan φs = [2.45 ± 1.93 (stat) ± 0.35 (syst)] × 10−2.

PACS numbers: 12.15.Hh, 13.20.He, 14.40.Nd

This letter presents the first measurement of a time
integrated flavor untagged charge asymmetry As,unt

SL in
semileptonic B0

s decays. This asymmetry is defined as:

As,unt
SL =

N(µ+D−
s ) − N(µ−D+

s )

N(µ+D−
s ) + N(µ−D+

s )
, (1)

where N(µ±D∓
s ) is the number of decays

(−)

B0
s →

µ±D∓
s νX integrated over the B0

s lifetime. This asym-
metry is called untagged because the initial flavor of the
B0

s meson is not determined. As,unt
SL is related to CP vio-

lation in B0
s mixing [1] and can be expressed through the

parameters of the B0
s mass matrix as [2]:

As,unt
SL =

1

2

x2
s + y2

s

1 + x2
s

∆Γs

∆ms

tan φs, (2)

where ∆Γs (∆ms) is the width (mass) difference between
the mass eigenstates in the B0

s system, xs = ∆ms/Γ̄s,
ys = ∆Γs/(2Γ̄s) where Γ̄s is the average width in the B0

s

system, and φs is a CP-violating phase. The standard
model (SM) predicts a very small value for this asymme-
try 2×As,unt

SL = as
SL = (0.21± 0.04)× 10−4 [2] while the

contribution of new physics can significantly modify this
prediction [3, 4].

This measurement was performed using a large sample
of semileptonic B0

s decays collected by the D0 experi-
ment at the Fermilab Tevatron collider in pp̄ collisions at√

s = 1.96 TeV and follows closely the procedure used
in the estimate of the dimuon asymmetry described in
Ref. [5]. The data correspond to an integrated luminos-
ity of approximately 1.3 fb−1. The D0 detector is de-
scribed in detail elsewhere [6]. The detector components
most important to this analysis are the central tracking
and muon systems. The central tracking system con-
sists of a silicon microstrip tracker (SMT) and a central
fiber tracker (CFT), both located within a 2 T supercon-
ducting solenoidal magnet, with designs optimized for
tracking and vertexing for pseudorapidities of |η| < 3
and |η| < 2.5, respectively. The outer muon system,
with coverage for |η| < 2, consists of a layer of track-
ing detectors and scintillation trigger counters in front of
1.8 T iron toroids, followed by two similar layers after the
toroids [7]. The polarities of the solenoid and toroids are
reversed regularly during data taking, so that the four
solenoid-toroid polarity combinations are exposed to ap-
proximately the same integrated luminosity. The direct
and reverse magnetic fields in the magnet were measured
to be equal to within 0.1%. The reversal of magnet po-
larities is essential to reduce the detector-related system-
atics in asymmetry measurements and is fully exploited
in this analysis.

The asymmetry As,unt
SL was measured using the decay

B0
s → µDsνX with Ds → φπ, φ → K+K−. The se-

lection of this final state is described in detail in Ref.
[8]. No explicit trigger requirement was made, although
most of the sample was collected with single-muon trig-
gers. Muons were required to have transverse momen-
tum pT (µ) > 2 GeV/c and momentum p(µ) > 3 GeV/c,
to have hits in both the CFT and SMT, and to have
measurements in at least two layers of the muon sys-
tem. All reconstructed charged particles in the event
were clustered into jets [9], and the Ds candidate was
reconstructed from three tracks found in the same jet
as the reconstructed muon. Oppositely charged parti-
cles with pT > 0.7 GeV/c were assigned the kaon mass
and were required to have an invariant mass 1.004 <
M(K+K−) < 1.034 GeV/c2, consistent with that of a φ
meson. The third track was required to have pT > 0.5
GeV/c, a charge opposite to that of the muon charge,
and was assigned the pion mass. The three tracks were
required to have hits in the CFT and SMT and to form
a common Ds vertex using the algorithm described in
detail in Ref. [10]. To reduce combinatorial background,
the Ds vertex was required to have a positive displace-
ment in the transverse plane, relative to the pp̄ collision
point (or primary vertex), with at least 4σ significance.
The cosine of the angle between the Ds momentum and
the direction from the primary vertex to the Ds vertex
was required to be greater than 0.9. The trajectories of
the muon and Ds candidates were required to originate
from a common B0

s vertex, and the (µDs) system was
required to have an invariant mass between 2.6 and 5.4
GeV/c2.

To further improve the B0
s signal selection, a likeli-

hood ratio method [11] was utilized. Using background
sidebands (B) and sideband-subtracted signal (S) distri-
butions in the data, probability distributions were found
for a number of discriminating variables. These variables
were the angle between the Ds and K momenta in the
K+K− center-of-mass frame, the isolation of the (µDs)
system, the χ2 of the Ds vertex, the invariant masses
M(µDs) and M(K+K−), and pT (K+K−). The isolation
was defined as the ratio of the sum of the momentum of
the tracks used to reconstruct the signal divided by the
total momentum of the tracks contained within a cone
with

√

∆η2 + ∆φ2 < 0.5 centered on the direction of the
µDs system. The final requirement on the combined se-
lection likelihood ratio variable was chosen to maximize
the predicted ratio S/

√
S + B.

For this analysis we required the B0
s vertex to have a

positive displacement from the primary vertex to sup-
press the combinatoric background from the process



5

1.7 1.8 1.9 2 2.1 2.2 2.3
0

1000

2000

3000

4000

5000

6000

7000
±π φ → ±

sD

2), GeV/c±πφM(

±π φ → ±D

-1D0, 1.3 fb
2

#e
ve

n
ts

/0
.0

1 
G

eV
/c

FIG. 1: The invariant mass distribution M(φπ) for the se-
lected B0

s candidates. The curve shows the result of fit by a
function described in the text.

cc̄(bb̄) → µDsνX with the Ds originating from a b or
c quark, and the muon arising from another quark. The
invariant mass distribution M(φπ) for the selected events
is shown in Fig. 1. The low and high peaks correspond re-
spectively to (µD),mostly due to B0, and (µDs), mostly
due to B0

s . The curve represents a fit to the M(φπ)
spectrum. A single Gaussian was sufficient to describe
the D → φπ decay, a double Gaussian to describe the
Ds → φπ decay, and the background was modeled by an
exponential. The total number of events passing all cuts
in the Ds mass peak is 27,300± 300 (stat).

To measure As,unt
SL , both physics and detector effects

contributing to the possible imbalance of events with pos-
itively and negatively charged muons must be taken into
account. One physics source of asymmetry is CP vio-
lation in semileptonic B decays. In addition, forward-
backward charge asymmetry of events produced in the
proton-antiproton collisions can also be present. Detec-
tor effects can give rise to an artificial asymmetry if, e.g.,
the reconstruction efficiencies of positively and negatively
charged particles are different. However, a positively
charged particle produces the same track as a negatively
charged particle in the detector with reversed magnet
polarity. Therefore, almost all detector effects can be
canceled provided the fractions of events with opposite
magnet polarities are approximately the same. This is
the case in this analysis, where the exposures are the
same within 1%.

According to the method described in Ref. [5], the
event sample was divided into eight subsamples corre-
sponding to all possible combinations of the toroid polar-
ity β = ±1, the sign of the pseudorapidity of the (µφπ)
system [12] γ = ±1, and the sign of the muon charge
q = ±1. The number of (µDs) events in each subsample
was obtained by a fit to the mass distribution M(φπ) us-
ing the same function as for the whole sample. For the
cross-check we also extracted the numbers of (µD) and

TABLE I: The numbers of events nβγ
q (Ds) [nβγ

q (D)] in the

Ds [D] mass peak and in the background nβγ
q (bkg) for eight

subsamples.

Subsample: nβγ
q (Ds) nβγ

q (D) nβγ
q (bkg)

βγq (events) (events) (events)
+ + + 3,216± 76 907± 55 9,797± 124
+ − + 3,586± 79 965± 56 10,387± 127
+ + − 3,391± 78 1,037± 57 10,390± 127
+ −− 3,225± 76 963± 55 9,832± 124
− + + 3,616± 80 1,003± 57 10,508± 128
−− + 3,370± 77 801± 54 9,987± 125
− + − 3,353± 77 831± 55 10,215± 125
−−− 3,532± 79 1,116± 59 10,701± 129

background events from the fit. The widths and positions
of the (µDs) and (µD) peaks, the relative fractions of the
two Gaussians describing the (µDs) peak, as well as the
background slope were fixed to the values obtained from
the fit to the total M(φπ) distribution. The numbers
of (µDs) and (µD) events, nβγ

q (Ds) and nβγ
q (D), along

with the number of the background events in the fitting
range 1.75− 2.30 GeV/c2, nβγ

q (bkg), for each subsample
is given in Table I.

The fitted numbers of (µDs) [(µD), background]
events were used to disentangle the physics asymme-
tries and the detector effects. The nβγ

q can be expressed
through the physics and the detector asymmetries as fol-
lows [5]:

nβγ
q =

1

4
Nǫβ(1 + qA)(1 + qγAfb)(1 + γAdet)

× (1 + qβγAro)(1 + qβAqβ)(1 + βγAβγ). (3)

Here N is the total number of (µDs) [(µD), background]
events; ǫβ is the fraction of integrated luminosity with
toroid polarity β (ǫ++ǫ− = 1); A is the integrated charge
asymmetry to be measured; Afb is the forward-backward
asymmetry; Adet is the detector asymmetry for particles
emitted in the forward and backward direction; Aro is
the range-out asymmetry that accounts for the change
in acceptance of muons which bend towards the beam
line and those which bend away from the beam line; Aqβ

is the detector asymmetry which accounts for the change
in the muon reconstruction efficiency when the toroid
polarity is reversed; Aβγ accounts for any detector re-
lated forward-backward asymmetries that remain after
the toroid polarity flip.

Since the system (3) contains eight equations, all six
asymmetries together with N and ǫ+ can be extracted
for each of the three types of the events. Results are pre-
sented in Table II separately for (µDs) and (µD) events
and the background. The physics asymmetries A and Afb

for background events are consistent with zero. This is
an important test for this method, since the precision of
the asymmetry measurement for the background events
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TABLE II: The physics and detector asymmetries for (µDs),
(µD) and background events. Uncertainties are statistical.

(µDs) (µD) Background
N 27,289± 220 7,623± 162 81,817± 357
ǫ+ 0.492± 0.004 0.510± 0.011 0.494± 0.002
A 0.0102± 0.0081 −0.0345± 0.0211 −0.0056± 0.0045

Afb −0.0046± 0.0081 0.0480± 0.0210 −0.0020± 0.0043
Adet −0.0051± 0.0081 −0.0072± 0.0212 0.0001± 0.0044
Aro −0.0352± 0.0081 −0.0819± 0.0209 −0.0263± 0.0044
Aβγ −0.0097± 0.0081 0.0104± 0.0213 −0.0010± 0.0044
Aqβ 0.0030± 0.0081 0.0014± 0.0212 0.0046± 0.0044

is much higher than that of the signal due to the larger
statistics. The largest detector asymmetry for all three
types of the events is the range-out asymmetry.

It can be seen from (3) that if ǫ+ = ǫ− = 1/2, and the
asymmetries A, Afb, Adet, Aro, Aqβ , Aβγ are small, each
of them can be obtained independently by the appropri-
ate division of the entire sample of events into two parts.
For example, the asymmetry A can be obtained be di-
viding the sample according to the charge of muon. For
such a division, and neglecting the second order terms,
we obtain:

A =
n+ − n−

n+ + n−

, (4)

nq =

+1
∑

β,γ=−1

nβγ
q ≃ 1

2
N(1 + qA).

This observation explains in particular the similar values
of statistical uncertainties for all asymmetries in Table
II.

The resulting charge asymmetry of (µDs) events is
A = 0.0102 ± 0.0081 (stat). It is related to As,unt

SL via

A = fs · As,unt
SL + fd · Ad,unt

SL , where fs(fd) is the fraction

of B0
s(B0

d) → µDsνX decays in the (µDs) sample. Ad,unt
SL

may arise only from B0
d → DDs decay, the fraction of

which in the (µDs) sample was found to be small, at the

level of (4 ± 1)%. Additionally, the value of Ad,unt
SL is

strongly constrained experimentally [13, 14] to be close

to zero. Therefore the time-integrated Ad,unt
SL compo-

nent can be neglected. The fraction of B0
s decays, fs,

was determined as follows. The decays B0
s → µDsνX

and B0
s → τDsνX → µDsνX were considered as a

signal. The decays B0
s → DsDsX with Ds → µνX

are not flavor-specific and hence were considered as a
background. The decays B0

d → DDsX were also in-
cluded in the background. In addition, the process
cc̄(bb̄) → µDsνX was taken into account. This back-
ground produces a pseudovertex which peaks around the
primary interaction point. It is reduced by approximately
50% by requiring a positive displacement of the (µDs)
vertex.

All processes were simulated using the evtgen [15]
generator interfaced to pythia [16] and followed by full
modeling of the detector response using geant [17] and
event reconstruction. The branching fractions of B0

d de-
cays were taken from Ref. [1], while the contribution
of the process cc̄(bb̄) → µDsνX was measured directly
in our data to be (5.9 ± 1.7)%. With these assump-
tions, (83.2 ± 3.3)% of the selected sample of (µDs)
events is composed of semileptonic B0

s decays. The un-
certainty on this value comes from the uncertainties on
the branching ratios of the contributing B decays and
the uncertainty on the fraction of the cc̄(bb̄) → µDsνX
process in the sample. Taking into account the sample
composition, the measured integrated charge asymme-
try of semileptonic B0

s decay is found to be As,unt
SL =

[1.23 ± 0.97 (stat)] × 10−2.
The following sources of systematic uncertainty were

considered. The final state includes a K+K− pair.
Therefore, the charge asymmetry of K meson reconstruc-
tion, which arises due to the different interaction cross
sections of K+ and K− in the detector material, does not
contribute to the measured As,unt

SL . The charge asymme-
try of pion reconstruction, however, can contribute. The
πd interaction cross sections for positive and negative pi-
ons differ by (1.3 ± 0.3)% in the range 1 − 2 GeV/c [18].
Taking into account the amount of material which a pion
crosses in the detector, the induced asymmetry due to
pion reconstruction was estimated to be 2 × 10−4. This
value was included in the systematic uncertainty.

The uncertainty in the fraction of B0
s signal in the

(µDs) sample produces a systematic uncertainty of 1 ×
10−3. This uncertainty also includes a possible residual
variation of the signal fraction between subsamples.

The uncertainty due to the fitting procedure was es-
timated by varying the masses and widths of the peaks,
and the slope of the background by one standard devi-
ation. The fitting procedure was also repeated with a
single Gaussian describing the Ds peak and with a dif-
ferent fitting range. The resulting change of As,unt

SL did
not exceed 0.14× 10−2 which was used as an estimate of
the systematic uncertainty from this source.

The B0
s reconstruction efficiency varies with the de-

cay length due to the applied requirements. We verified
that this variation does not bias the result for As,unt

SL and
the relation (2). In addition, any possible contribution
of the B0

d charge asymmetry to the measured value was
estimated to be negligible.

Adding all contributions into the systematic uncer-
tainty in quadratures, we obtain the resulting value of
the time-integrated untagged charge asymmetry:

As,unt
SL = [1.23± 0.97 (stat)± 0.17 (syst)]× 10−2.(5)

This is the first direct measurement of As,unt
SL . It can be

seen that the statistical uncertainty dominates and will
be improved in the future with the increase of statistics
and addition of new decay modes. Using Eq. (2) and
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assuming that ∆ms/Γ̄s ≫ 1, ∆Γs/(2Γ̄s) < 1 [19], we
obtain:

∆Γs

∆ms

tanφs =

[2.45 ± 1.93 (stat) ± 0.35 (syst)] × 10−2. (6)

This result, together with the measurements of ∆Γs [20,
21] and ∆ms [8, 22], provides a constraint on the CP-
violating phase φs.
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